cules (4), (5) and (7)]; however, the carboxyl oxygen involved in the chelate ring may also be bonded to the barium cation [molecule (3)]; both carboxyl oxygens may be bonded to the same barium [molecule (1)], to two different bariums [molecules (2) and (6)], or to the barium and the other neodymium ion [molecule (8)]. There is a pair of intramolecular hydrogen bonds in the complex molecule (represented by dashed lines in Fig. 1). The structure is held together by an elaborate network of intermolecular hydrogen bonds. The crystal packing is shown in Fig. 2 (the disordered waters $\mathrm{O} W 8, \mathrm{O} W 9, \mathrm{O} W 10$ and OWll have been omitted for the sake of clarity).

The author thanks Professors K. Bukietyńska and T. Głowiak for helpful discussions, and Dr T. Lis for advice and help in performing the measurements. This work was supported by the Polish Academy of Sciences (project CPBP 01.12).

References

Drew, M. G. B. (1977). Coord. Chem. Rev. 24, 179-275.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England. Sinha, S. P. (1976). Struct. Bonding (Berlin), 25, 69-1 54.

Acta Cryst. (1991). C47, 35-37

Carbonyl $\left(\boldsymbol{\eta}^{5}\right.$-cyclopentadienyl)bis(trimethyl phosphite)ruthenium(II) Tetrafluoroborate

By Kevin G. Frank and John P. Selegue
Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

(Received 27 March 1990; accepted 18 June 1990)

Abstract

Ru}(\mathrm{CO})\left\{\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}\right\}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{BF}_{4}\right], \quad M_{r}=\) 529.13, monoclinic, $P 2_{1} / c, \quad a=11 \cdot 455(2), \quad b=$ 11.648 (4), $c=15.709$ (2) $\AA, \quad \beta=99.40$ (1) ${ }^{\circ}, \quad V=$ $2067.87 \AA^{3}, Z=4, D_{x}=1.700 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.7107 \AA, \mu=9.577 \mathrm{~cm}^{-1}, F(000)=1064$, $T=296 \mathrm{~K}, R=0.039$ for 2941 observed reflections. The crystal structure of the title compound consists of discrete $\left[\mathrm{Ru}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]^{+}$cations and $\left[\mathrm{BF}_{4}\right]^{-}$anions. The cation displays a typical 'threelegged piano stool' geometry about ruthenium with significant distances $\mathrm{Ru}-\mathrm{P} 1 \quad 2 \cdot 258$ (1), $\mathrm{Ru}-\mathrm{P} 2$ $2 \cdot 260(1), \mathrm{Ru}-\mathrm{Cl} 1 \cdot 880(6), \mathrm{Cl}-\mathrm{O} 11 \cdot 115(6) \AA$, and angles $\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ol} 176 \cdot 9(5), \mathrm{Cl}-\mathrm{Ru}-\mathrm{Pl}$ $90 \cdot 3$ (2), $\mathrm{C} 1-\mathrm{Ru}-\mathrm{P} 289 \cdot 8$ (2) and $\mathrm{Pl}-\mathrm{Ru}-\mathrm{P} 2$ $92.2(1)^{\circ}$.

Introduction. The $\left[\mathrm{Ru}(L)\left(\mathrm{P} R_{3}\right)_{2}(\mathrm{Cp})\right]$ system is extensively studied, particularly for $L=\mathrm{PPh}_{3}$ because the starting material $\left[\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Cp})\right]$ is easily synthesized and handled (Bruce, Hameister, Swincer, Wallis \& Ittel, 1982) and both its chloride and phosphine ligands are substitutionally labile (Albers, Robinson \& Singleton, 1987). We are interested in the chemistry of $\left[\mathrm{Ru}(L)\left(\mathrm{P} R_{3}\right)_{2}(\mathrm{Cp})\right]$ complexes with smaller ancillary phosphines such as trimethyl phosphite (Ashby, Bruce, Tomkins \& Wallis, 1979; Bruce, Cifuentes, Snow \& Tiekink, 1989; Treichel, Komar \& Vincenti, 1984). We recently obtained single crystals of $\left[\mathrm{Ru}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]\left[\mathrm{BF}_{4}\right]$
(I) during attempted slow recrystallization of $\left[\mathrm{Ru}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]\left[\mathrm{BF}_{4}\right]$, evidently via the oxidation of the $\mathrm{C}_{2} \mathrm{H}_{2}$ ligand by traces of air (Bruce, Swincer \& Wallis, 1979). Compound (I) has not previously been reported.

Experimental. $\left[\mathrm{Ru}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]\left[\mathrm{BF}_{4}\right]$ (I) was prepared and crystallized by passing a stream of nitrogen gas saturated with diethyl ether over $\left[\mathrm{Ru}\left(\eta^{2}-\mathrm{HC} \equiv \mathrm{CH}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]\left[\mathrm{BF}_{4}\right]$ (Frank \& Selegue, 1990) dissolved in a minimum of dichloromethane. A $0.42 \times 0.47 \times 0.53 \mathrm{~mm}$ crystal suitable for X-ray diffraction was cut from one of the resulting large, pale yellow crystals. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO})$ $2022 v s, \quad \nu(\mathrm{BF}) \quad 1094 v s \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} 4.43\left(t,{ }^{3} J_{\mathrm{PH}}=1.0 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{Cp}\right), 3.53$ (virtual $t,{ }^{3} J_{\mathrm{PH}}+{ }^{5} J_{\mathrm{PH}}=5 \cdot 3 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{POCH}_{3}$). Data were measured with an Enraf-Nonius CAD-4 diffractometer controlled by a MicroVAX computer, graphite-monochromated Mo $K \alpha$ radiation; $\omega-2 \theta$ scan technique. Cell parameters were determined by least-squares refinement of 25 reflections ($6<\theta<$ 16°). A total of 3989 reflections $\left(2<\theta<25^{\circ}\right)$ were measured in the range $-13 \leq h \leq 13,0 \leq k \leq 13,0 \leq$ $l \leq 18$. Minor variation (max. 13%) was noted in the net intensities of three reference reflections $(13 \overline{5}, 13 \overline{7}, \overline{1} 3 \overline{3})$ measured every 5000 s . Of 3773 unique reflections, 2941 satisfied $I \geq 3 \sigma(I)$. An empirical absorption correction was applied using
0108-2701/91/010035-03\$03.00

Table 1. Positional parameters and equivalent isotropic B values for the non-hydrogen atoms of $\left[\mathrm{Ru}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]\left[\mathrm{BF}_{4}\right](\mathrm{I})$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)^{*}$
Ru	0.20350 (3)	-0.01295 (3)	-0.25126 (2)	$3 \cdot 19$ (1)
P1	0.1573 (1)	0.0256 (1)	-0.11988 (8)	$3 \cdot 36$ (2)
P2	0.3922 (1)	0.0465 (1)	-0.2107 (1)	3.89 (4)
F1	0.2285 (9)	0.0482 (6)	0.4551 (6)	18.5 (4)
F2	0.1316 (5)	-0.0909 (6)	0.4032 (4)	$13 \cdot 2$ (3)
F3	$0 \cdot 3207$ (5)	-0.1019 (5)	0.4559 (4)	12.2 (2)
F4	0.2584 (7)	-0.0138 (9)	0.3342 (4)	20.7 (5)
O1	0.1319 (4)	0.2239 (4)	-0.3130 (3)	6.8 (2)
02	0.0322 (3)	-0.0211 (3)	-0.1038 (2)	$4 \cdot 2$ (1)
03	0.1565 (3)	0.1583 (3)	-0.0989 (2)	4.2 (1)
04	0.2357 (4)	-0.0248 (3)	-0.0358 (2)	4.7 (1)
O5	0.4750 (3)	-0.0609 (3)	-0.1941 (3)	$5 \cdot 5$ (1)
06	0.4313 (3)	0.1182 (3)	-0.1254 (3)	5.4 (1)
07	0.4470 (3)	$0 \cdot 1274$ (4)	-0.2749 (3)	$5 \cdot 8$ (1)
C1	0.1599 (5)	$0 \cdot 1369$ (5)	-0.2879 (4)	4.3 (2)
C2	-0.0750 (5)	$0 \cdot 0232$ (5)	-0.1538 (5)	$5 \cdot 7$ (2)
C3	$0 \cdot 1327$ (6)	0.1990 (5)	-0.0167 (4)	5.4 (2)
C4	0.2761 (7)	-0.1369 (6)	-0.0292 (4)	7.5 (3)
C5	0.6038 (6)	-0.0510 (8)	-0.1700 (6)	8.4 (3)
C6	0.4191 (6)	0.2391 (6)	-0.1203 (5)	7.2 (2)
C7	$0 \cdot 4363$ (6)	$0 \cdot 1047$ (7)	-0.3652 (4)	7.0 (2)
Cpl	0.0578 (5)	-0.1298 (5)	-0.3134 (4)	$5 \cdot 3$ (2)
Cp 2	0.1317 (6)	-0.1938 (5)	-0.2503 (4)	$5 \cdot 7$ (2)
Cp3	0.2446 (6)	-0.1984 (5)	-0.2721 (5)	$5 \cdot 7$ (2)
Cp4	0.2413 (6)	-0.1381 (6)	-0.3511 (5)	$6 \cdot 2$ (2)
Cp 5	$0 \cdot 1261$ (7)	-0.0979 (6)	-0.3758 (4)	$6 \cdot 2$ (2)
B	$0 \cdot 2376$ (8)	-0.0380 (7)	$0 \cdot 4077$ (5)	5.8 (2)

The equivalent isotropic displacement parameter is defined as (4/3) $\operatorname{Tr}(\beta \cdot \mathbf{G})$, where $\beta_{i j}=2 \pi^{2} a_{i}^{} a_{j}^{*} U_{i j}$ and $\mathbf{G}_{i j}=\mathbf{a}_{i} \cdot \mathbf{a}_{j}$, where \mathbf{a}_{i} and \mathbf{a}_{j} are basis vectors in direct space.

Table 2. Selected bond distances (\AA) and angles (${ }^{\circ}$) with e.s.d.'s

$\mathrm{Ru}-\mathrm{Cl}$	$1.880(6)$	$\mathrm{Cl}-\mathrm{Ru}-\mathrm{P} 1$	$90.3(2)$
$\mathrm{Ru}-\mathrm{Cp} 0^{*}$	$1.904(6)$	$\mathrm{Cl}-\mathrm{Ru}-\mathrm{P} 2$	$89.8(2)$
$\mathrm{Ru}-\mathrm{P} 1$	$2.258(1)$	$\mathrm{Pl}-\mathrm{Ru}-\mathrm{P} 2$	$92.2(1)$
$\mathrm{Ru}-\mathrm{P} 2$	$2.260(1)$	$\mathrm{Cl}-\mathrm{Ru}-\mathrm{Cp} 0^{*}$	$126.8(3)$
$\mathrm{Cl}-\mathrm{Ol}$	$1.115(6)$	$\mathrm{Cp} 0^{*}-\mathrm{Ru}-\mathrm{P} 1$	$123 \cdot 4(2)$
$\mathrm{P}-\mathrm{O}$	$1.581(7) \dagger \ddagger$	$\mathrm{Cp} 0^{*}-\mathrm{Ru}-\mathrm{P} 2$	$124 \cdot 1(2)$
$\mathrm{C}-\mathrm{O}$	$1.43(2) \dagger \ddagger$	$\mathrm{Ru}-\mathrm{Cl}-\mathrm{Ol}$	$176.9(5)$
$\mathrm{Cp}-\mathrm{Cp}$	$1.40(1) \dagger \S$	$\mathrm{O}-\mathrm{P}-\mathrm{O}$	$120(3) \dagger \ddagger$
$\mathrm{B}-\mathrm{F}$	$1.30(5) \dagger$	$\mathrm{Ru}-\mathrm{P}-\mathrm{O}$	$116(4) \dagger$
		$\mathrm{P}-\mathrm{O}-\mathrm{C}$	$122(1) \dagger \ddagger$
		$\mathrm{Cp}-\mathrm{Cp}-\mathrm{Cp}$	$108 \cdot 0(9) \dagger \$$
		$\mathrm{~F}-\mathrm{B}-\mathrm{F}$	$109(5) \dagger$

* Cp 0 is the centroid of the $\mathrm{Cp} 1-\mathrm{Cp} 5$ cyclopentadienyl ring.
\dagger Average value reported with σ_{n}.
\ddagger Phosphite ligands.
$\S C p$ represents any cyclopentadienyl carbon atom.
CAMEL (Flack, 1977) with correction factors: max. $1 \cdot 50$, min. $1 \cdot 29$, av. 1-34; no extinction correction was made. Scattering factors for Ru, P and F were corrected for f^{\prime} and $f^{\prime \prime}$ (Cromer \& Waber, 1974). All calculations were made using an IBM 3084 computer system. The ruthenium atom was located using Patterson methods and the remaining non-hydrogen atoms by using DIRDIF (Beurskens et al., 1984). Full-matrix least-squares refinement on F magnitudes with weights $w=4 I /\left[\sigma^{2}(I)\right]$, where $\left[\sigma^{2}(I)\right]$ included a term $(0.02)^{2}$. Anisotropic thermal parameters were refined for all non-hydrogen atoms. One
hydrogen atom on each of six methyl groups was located in a difference Fourier map, and all remaining hydrogens were placed in idealized positions with $d(\mathrm{C}-\mathrm{H})=1.00 \AA$ and $B(\mathrm{H})=B_{\text {eq }}($ attached C$)+$ 1.00. Hydrogen positions and thermal parameters were subsequently adjusted after each two leastsquares cycles of refinement. At convergence, $R=$ $0.039, w R=0.053$ for 244 variables, $S=3.11$, $(\Delta / \sigma)_{\max }=-0.17$ for $\beta(2,2)$ of $\mathrm{F} 4,(\Delta \rho)_{\max }=$ $0.09 \mathrm{e} \AA^{-3}$ near BF_{4}^{-}. Atomic parameters are listed in Table 1, and selected bond distances and angles are in Table 2. An ORTEP (Johnson, 1976) plot with the numbering scheme is shown in Fig. 1.*

Discussion. The structure of (I) consists of well separated $\left[\mathrm{Ru}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]^{+}$cations and $\left[\mathrm{BF}_{4}\right]^{-}$anions. Bonding distances and angles in the cation are typical of an $\left[\mathrm{Ru} L_{3}(\mathrm{Cp})\right]$ 'piano-stool' or pseudooctahedral structure (Bruce, Humphrey, Snow \& Tiekink, 1986), with $L-\mathrm{Ru}-L$ 'basal' angles averaging 91 (1) ${ }^{\circ}$ (Table 2). The $\left[\mathrm{BF}_{4}\right]^{-}$ion is reasonably well ordered.

The ruthenium to trimethyl phosphite distances in (I), $2 \cdot 258$ (1) and $2 \cdot 260$ (1) \AA, fall in the middle of the range of $\mathrm{Ru}-\mathrm{P}$ distances for 23 Ru $\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}$ structures in the Cambridge Crystallographic Database, 2.18 to $2.35 \AA$. In particular, the Ru-P distances are very slightly longer than those in $\left[\mathrm{RuCl}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right][2 \cdot 199$ (3) and 2.234 (2) $\AA]$

[^0]

Fig. 1. ORTEP drawing (Johnson, 1976) of the $[\mathrm{Ru}(\mathrm{CO}\{\mathrm{P}-$ $\left.\left.(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right]^{+}$cation showing the numbering system. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacements.
and two isomers of $\left[\mathrm{Ru}\left\{\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2} \mathrm{CPh}=\right.\right.$ $\left.\left.\mathrm{C}(\mathrm{CN})_{2}\right\}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{2}(\mathrm{Cp})\right][2.231$ (1) to 2.238 (2) \AA; Bruce, Cifuentes, Snow \& Tiekink, 1989]. This slight lengthening may be due to effective competition for π-backbonding electron density by the carbonyl ligand in (I).

The $\mathrm{Ru}-\mathrm{Cl}$ bond distance of 1.880 (6) \AA in (I) falls within the range of $\mathrm{Ru}-\mathrm{CO}$ distances of $1.869(2) \AA$ for $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Cp})\right]\left[\mathrm{BPh}_{4}\right] \quad$ (II; Wisner, Bartczak \& Ibers, 1985), 1.890 (2) \AA for $\left[\mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{Cp})\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ (III; Doyle \& Van Engen, 1985) and 1.863 (3) \AA for $[\mathrm{Ru}(\mathrm{CO})$ -$\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}\right.$-indenyl) $)\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IV; Oro, Ciriano, Campo, Foces-Foces \& Cano, 1985). Similarly, the $\mathrm{C}-\mathrm{O}$ bond distance for (I), $1 \cdot 115$ (6) \AA, does not differ significantly from the values of $1 \cdot 144$ (3), $1 \cdot 135$ (3) and $1 \cdot 145$ (4) \AA found respectively in structures (II)-(IV). This is not surprising, as metalcarbon and carbon-oxygen distances in metal carbonyl compounds are notoriously insensitive to changes in ancillary ligands. The carbonyl stretching frequencies in the infrared spectra are better indicators of electron density available for backbonding at ruthenium, being 2022, 1987, 1978 and $1970 \mathrm{~cm}^{-1}$ for compounds (I)-(IV), respectively.

We are grateful to the United States Department of Energy (DE-FG05-85ER13432) and (in part) the Kentucky EPSCoR program (funds from the National Science Foundation Grant RII-8610671 and the Commonwealth of Kentucky) for financial support, to the University of Kentucky Major Research Instrumentation Bond Program for equip-
ment, to the Ashland Oil Foundation for a summer fellowship to KGF, and to Johnson Matthey, Inc., for a generous loan of ruthenium trichloride.

References

Albers, M. O., Robinson, D. J. \& Singleton, E. (1987). Coord. Chem. Rev. 79, 1-96.
Ashby, G. S., Bruce, M. I., Tomiins, I. B. \& Wallis, R. C. (1979). Aust. J. Chem. 32, 1003.

Beurskens, P. T., Bosman, W. P., Doesburg, h. M., Gould, R. O., van den Hark, Th. E. M., Prick, P. A., Noordik, J. H., Beurskens, G., Parthasarthi, V., Bruins Slot, H. J., Haltiwanger, R. C., Strumpel, M. \& Smits, J. M. M. (1984). DIRDIF. Tech. Rep. 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Bruce, M. I., Cifuentes, M. P., Snow, M. R. \& Tiekink, R. T. (1989). J. Organomet. Chem. 359, 379-399.

Bruce, M. I., Hameister, C., Swincer, A. G., Wallis, R. C. \& Ittel, S. D. (1982). Inorg. Synth. 21, 78-84.
Bruce, M. I., Humphrey, M. G., Snow, M. R. \& Tiekink, R. T. (1986). J. Organomet. Chem. 314, 213-225.

Bruce, M. I., Swincer, A. G. \& Wallis, R. C. (1979). J. Organomet. Chem. 171, C5.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Tables 2.2B and 2.3.2. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Doyle, G. \& Van Engen, D. (1985). J. Organomet. Chem. 280, 253-259.
Flack, H. D. (1977). Acta Cryst. A33, 890-898.
Frank, K. G. \& Selegue, J. P. (1990). Unpublished results.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Oro, L. A., Ciriano, M. A., Campo, M., Foces-Foces, C. \& Cano, F. H. (1985). J. Organomet. Chem. 289, 117.
Treichel, P. M., Komar, D. A.\& Vincenti, P. J. (1984). Synth. React. Inorg. Met. Org. Chem. 14, 383-400.
Wisner, J. M., Bartczak, T. J. \& Ibers, J. A. (1985). Inorg. Chim. Acta, 100, 115-123.

Structure of (+)-(3S,4R,5R,1'R,2'S,5'R)-Tetracarbonyl\{(3,4-ク(2)-5-[5'-methyl-$\mathbf{2}^{\prime}$-(1-methylethyl)cyclohexyloxyl-2(5H)-furanone\}iron

By Dieter Enders* and Thomas Schmitz
Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Professor-Pirlet-Straße 1, D-5100 Aachen, Germany
and Gerhard Raabe and Carl Krüger
Max-Planck-Institut für Kohlenforschung, Röntgenlabor, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a.d. Ruhr, Germany

(Received 9 April 1990; accepted 2 July 1990)

[^1]0108-2701/91/010037-04\$03.00
$28.056(1) \AA, \quad V=1958.3 \AA^{3}, \quad Z=4, \quad D_{x}=$
$1.38 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu=8.00 \mathrm{~cm}^{-1}$,
$F(000)=848, \quad T=293 \mathrm{~K}, \quad R=0.030 \quad$ for $\quad 3655$
observed reflections, crystals obtained from hexane.
(c) 1991 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, further bond distances and angles, least-squares-plane data and intermolecular distances less than $2.6 \AA$ have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53306 (26 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: Abstract. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FeO}_{7}, M_{r}=406 \cdot 2$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=6.4633(3), \quad b=10.7995(7), \quad c=$

 * To whom correspondence should be addressed.

